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Abstract. The gas transfer velocity (k) is a major source of uncertainty when assessing the magnitude of lake gas exchange 

with the atmosphere. For the diversity of existing empirical and process-based k models, the transfer velocity increases with 

the level of turbulence near the air-water interface. However, predictions for k can vary by a factor of 2 among different models. 15 

Near-surface turbulence results from the action of wind shear, surface waves and buoyancy-driven convection. Wind shear has 

long been identified as a key driver, while recent lake studies have shifted the focus towards the role of convection, particularly 

in small lakes. In large lakes, wind fetch can however be long enough to generate surface waves and contribute to enhance gas 

transfer, as widely recognised in oceanographic studies. Here, field values for gas transfer velocity were computed in a large 

hardwater lake, Lake Geneva, from CO2 fluxes measured with an automated (forced diffusion) flux chamber and CO2 partial 20 

pressure measured with high frequency sensors. k estimates were compared to a set of reference limnological and oceanic k 

models. Our analysis reveals that accounting for surface waves generated during windy events significantly improves the 

accuracy of k estimates in this large lake. The improved k model is then used to compute k over a one-year time-period. Results 

show that episodic extreme events with surface waves (6 % occurrence, significant wave height > 0.4 m) can generate more 

than 20 % of annual cumulative k and more than 25 % of annual net CO2 fluxes in Lake Geneva. We conclude that for lakes 25 

whose fetch can exceed 15 km, k-models need to integrate the effect of surface waves.  

1 Introduction 

Lakes are universally regarded as significant sources of CO2 to the atmosphere, however, the accurate quantification of the 

magnitude of such emissions remains to date challenging (Cole et al., 2007; Tranvik et al., 2009; Raymond et al., 2013). While 

CO2 fluxes can be directly measured with floating chamber or eddy covariance systems (Vachon et al., 2010; Vesala et al., 30 

2006), these approaches suffer from limited time and space integration (from minutes to hours, and centimetres to metres; 
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Klaus and Vachon, 2020). Long-term direct flux measurements are thereby mostly restricted to small lakes (Huotari et al., 

2011) and fluxes remain mostly estimated with models. CO2 fluxes at the surface of lakes operate through a net diffusive 

transport, therefore obeying the Fick’s first law:  

𝐹 = 𝑘𝛼∆𝑝𝐶𝑂2 ,            (1) 35 

where F (mol m-2 s-1 but often expressed as μmol cm-2 h-1) is the CO2 gas flux, 𝛼 is the CO2 solubility coefficient (μmol cm-3 

μatm-1), ΔpCO2 is the gradient of partial pressure of CO2 (pCO2) between the water and the atmosphere corrected for altitude 

(μatm); and k is the gas transfer velocity (cm h-1). 

 

Lake carbon emissions are therefore primarily driven by the gradient of partial pressure of CO2 between the surface lake water 40 

and the atmosphere, but the gas-transfer velocity controls the rate of CO2 exchange across the lake-atmosphere interface. 

Assessing the amount of lake CO2 emissions to the atmosphere has been a major issue, starting with the Cole and al’s 1998 

seminal paper, with debates regarding both the representativeness of the measurements and the optimal conceptual model for 

air-water gas transfer (e.g., MacIntyre et al., 2001; Borges et al., 2004). As recent developments in sensor technologies allow 

continuous and accurate measurements of aqueous CO2 concentrations, the gas transfer velocity remains, to date, the main 45 

source of uncertainties, which hinders attempts to achieve full carbon budgets (Dugan et al., 2016) or to quantify greenhouse 

gas emissions by lakes, at local, regional, or worldwide scales (Maberly et al., 2012; Raymond et al., 2013; Engel et al., 2018). 

 

k is inherently tied to turbulent mixing within the surface boundary layer, which enhances the diffusive gas exchange by 

renewing the surface mass content (Zappa et al., 2007). At the lake-atmosphere interface, turbulent mixing is the product of 50 

wind shear, buoyancy flux, and wind-driven surface waves, whose effect can be split into wave action and wave breaking, the 

latter producing air bubble and water spray (Fig. 1; Wüest and Lorke, 2003, Soloviev et al., 2007). Regarding the prominent 

role of wind action on surface turbulence, first quantitative models have empirically scaled k to wind-speed (referenced at a 

10 m height; U10), as a proxy for the level of wind-driven turbulence (Fig. 1; Cole and Caraco, 1998; Crusius and Wanninkhof, 

2003). The parameterizations of the k-wind relationships vary between authors (e.g., Klaus and Vachon 2020), as a likely 55 

consequence of the local characteristics of the lakes used in the calibration datasets (Table 1). Yet, all studies suggested a 

polynomial relationship between U10 and k with order larger than unity. Further development of empirical models integrated 

the lake surface area as a second parameter in the k-wind relationships, to account for the role of the fetch length for wind 

action (Vachon and Prairie, 2013). Generally, empirical wind-based models tend to underestimate fluxes, especially at low-

wind speed (e.g., Schubert et al., 2012; Heiskanen et al., 2014; Mammarella et al., 2015) where turbulent mixing through 60 

buoyancy flux is expected to take over wind shear. Besides, these empirical models require a proper calibration each time they 

are applied in a new system with different characteristics, i.e., a new set of lakes and/or meteorological conditions (Klaus and 

Vachon, 2020), hence limiting their universal applicability. 

Figure 1 
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In parallel to empirical wind-based models, process-based models attempt to link k directly to near-surface turbulence. The 65 

surface renewal model (SRM) is one of the first, and still most widely used, theories (Danckwerts 1951; Lamont and Scott, 

1970) with k depending on the product of the turbulent kinetic energy dissipation rate (ε) and the kinematic viscosity of water 

(𝜐), both to a power of one quarter as follows: 

𝑘 = 𝑎1(𝜀𝜐)1 4⁄ 𝑆𝑐−1 2⁄  ,           (2) 

with 𝑎1 a calibration constant parameter and Sc, the Schmidt number. Recently Lorke and Peeters (2006) and Katul and Liu 70 

(2017) demonstrated that this relationship, to which different approaches converge, can be seen as a universal scaling. As 

opposed to the practical empirical models presented above, process-based models have the potential to predict k using the 

turbulent dissipation rate over a wide range of environmental conditions extending beyond those encountered in the calibration 

dataset (Zappa et al., 2007). As for lakes, SRM k-models have so far considered the friction velocity at the water side (𝑢,𝑤𝑎𝑡) 

and the turbulence created by thermal convection using the buoyancy flux at the surface (𝐵0) (Fig. 1; Eugster et al., 2003; 75 

MacIntyre et al., 2010; Read et al., 2012; Tedford et al., 2014; Heiskanen et al., 2014). Noteworthily, the SRM approach leads 

to k being related to 𝑢,𝑤𝑎𝑡 (or U10) to the first order (Wanninkhof, 1992; Lorke and Peeters 2006; see also Material and Methods 

section), while empirical models described above predict a higher order polynomial relationship. This inconsistency is 

tentatively solved in oceanography by adding another source of gas exchange associated with wind-waves whitecaps. Early 

gas flux parameterization already accounted for wind and buoyancy-driven turbulence together with surface waves (Fig. 1; 80 

Woolf et al., 1997; Soloviev et al., 2007; Fairall et al., 2011). Yet, the buoyancy-driven contribution can often be neglected in 

oceanography, and recent efforts have been dedicated to a better parameterization of the bubble enhancement term (Fig. 1; 

Deike and Melville, 2018). In lakes, wind fetch can be long enough to generate surface waves (Wanninkhof, 1992; Frost and 

Upstill-Goddard, 2002; Borges et al., 2004; Guérin et al., 2007), thus implying that surface waves could be a significant driver 

of k and subsequent CO2 fluxes (Schilder et al., 2013; Vachon and Prairie, 2013). Insofar, the role of surface waves has been 85 

essentially accounted empirically in lake k-models, through the polynomial scaling to U10 in wind-based models, and most 

often neglected in studies using process-based parameterizations (mainly SRM) (e.g., Read et al., 2012). While this 

approximation may be appropriate for small-shielded lakes, it is likely to be insufficient in larger, long-fetched lakes. 

 

Herein, we aim to identify the most adequate k-model for Lake Geneva, a large clear hardwater lake in the Swiss Alps, to 90 

assess k values over a full annual cycle. We compare the performances of different models of gas transfer velocity, in their 

original or slightly modified published formulations from the limnological and oceanic literatures. This set of models includes 

different levels of complexity, ranging from empirical models integrating wind speed and lake size, to process-based models 

including wind shear, convection, and surface waves. Continuous ΔpCO2 measurements by in situ automated sensors and CO2 

fluxes, obtained from a new generation of automated (forced diffusion) flux chamber, were collected during specific periods 95 

of intensive field survey covering a wide range of natural conditions. Empirical k values computed from chamber data are then 

compared to outputs from the different k-models. Owing to the size of Lake Geneva, we anticipate that models accounting, 
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implicitly or explicitly, for the four key exchange drivers (i.e., wind shear, convective mixing, wave action and bubble 

formation) will show the highest accuracy and precision in their estimation of k and that a precise integration of surface wave 

effects in such a large system should enhance model predictions. Thereafter, the relative distribution of these components is 100 

computed over a full year and analysed in the scope of the temporal variability of the gas transfer velocity. Finally, we expect 

that extreme wind and associated wave events should contribute disproportionately to accumulated k values over the year. In 

such a case, episodic weather events could generate large CO2 fluxes over very short timescales that should be accounted for 

when computing annual CO2 emission budgets. 

2 Material and Methods 105 

2.1 Study Site 

Lake Geneva is a peri-alpine lake defining part of the Swiss-French border, at 372 m above sea level (46° 26’ N; 6° 33’ E). Its 

surface area (582 km2) and its maximum depth (309 m) make it the largest freshwater body in Western Europe, with a volume 

of 89 km3 (Fig. 2). Lake Geneva is monomictic. The two prevailing winds are nearly opposed and come from southwest and 

northeast respectively (Fig. 2). The lake water has been monthly or fortnightly surveyed from the late 1950’s (OLA-IS, AnaEE-110 

France, INRAE of Thonon-les-Bains, CIPEL, Rimet et al., 2020). Surface CO2 concentrations, as computed from the routine 

temperature, alkalinity, and pH measurements (Stumm and Morgan, 1981), show a typical seasonal cycle with high, 

supersaturated values during winter mixing and values below saturation in summer (Perga et al., 2016). 

Figure 2 

2.2 Field data at LéXPLORE 115 

All field data were collected from the LéXPLORE platform, a 10 m by 10 m pontoon equipped with high-tech instrumentation 

and installed on Lake Geneva in 2019. LéXPLORE is moored at a 110 m depth, 570 m off the northern lake shore (Fig. 2). 

 

On LéXPLORE, local weather conditions (air temperature, wind speed and direction, relative humidity, short wave radiation 

and atmospheric pressure) were continuously recorded (10 minutes intervals) by a Campbell Scientific Automatic Weather 120 

Station. Lake surface temperature was measured every minute at 50 cm-depth using a Minilog II-T (Vemco, resolution 0.01° 

C). Partial pressure of water surface CO2 (pCO2) was also measured at 50 cm-depth during specific surveys (see flux 

measurement) using a miniCO2 sensor (Pro-Oceanus Systems Inc.) with an accuracy of ± 30 ppm. Values of pCO2 in ppm 

were converted into μatm following the basic equation correcting for altitude (Russell and Denn, 1972). We therefore assume 

that the concentration and the temperature are homogeneous over the first 50 centimetres.  125 

 

Fetch distance (m) from LéXPLORE to the lake shores considering wind direction was computed using data from the Federal 

Office of Topography online portal (Swisstopo-geoportal: geo.admin.ch). The position of LéXPLORE is particularly relevant 
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for this study as the fetch ranges from ~0.5 km to ~30 km for the two prevailing winds. Significant wave height, Hs, (in m) 

was computed after Hasselmann et al. (1973) according to: 130 

𝐻𝑠 = 1.6 ∙ 10−3 ∙ 𝑈10 ∙ (𝐹𝑒𝑡𝑐ℎ 𝑔⁄ )1 2⁄  ,         (3) 

where g is the gravitational constant. This equation is equivalent to the formulation by Carter (1982) that is more widely used 

in the oceanic literature. Simon (1997) tested the model for significant wave heights in Lake Neuchâtel (a nearby but smaller 

lake than Lake Geneva) with a fetch distance of 9 km. His results showed that, beyond a critical threshold of wind value (~5 

m s-1) wave breaking occurs faster and with a higher probability in the case of not fully developed surface waves. Such waves 135 

are characterized by steeper slopes that favour their breaking (Wüest and Lorke, 2003).  

 

The net CO2 flux at the lake-atmosphere interface, F, was directly measured with an automated (forced diffusion) floating CO2 

flux chamber (eosFD, eosense: environmental gas monitoring; Risk et al., 2011) originally developed for soil flux studies. The 

flux chamber had a detection limit close to 0.05 μmol cm-2 h-1 and measured F every 15-minutes in summer and 30-minutes 140 

in winter for battery-saving purpose. The standard floating chambers require quiet surface conditions (e.g., Cole et al., 2010; 

Vachon et al., 2010; Bastviken et al., 2015), thus limiting studies from low to moderate wind speed conditions. One typical 

problem with floating chambers arises from the possible atmospheric leakage under rough surface. Our flux chamber was 

specifically conceived to increase stability under windy conditions (Fig. A1). We tested the performance of the floating 

chamber by comparing the standard deviation of the CO2 concentrations of the atmosphere and in the chamber estimated from 145 

two separated cavities (Fig. A1; Risk et al., 2011). We did not observe any difference in the standard deviation between high 

and low wind conditions (Fig A3), suggesting that the measured fluxes remained reliable at high wind speed.  

 

We assessed the performances of our flux chamber during 5 specific periods over the annual cycle (i.e., 13 th–14th June 2019, 

27th–28th August 2019, 1st–5th October 2019, 18th–20th December 2019, and 20th–26th February 2020). To select the most robust 150 

dataset to compare with k estimates derived from models, we discarded flux data that were below the detection limit, as well 

as CO2 gradients that ranged within the uncertainty of sensors (i.e., ± 20 ppm for air and ± 30 ppm for water leading to ± 50 

ppm) (Fig. A2). Accordingly, we were able to retain the most robust data points during the following deployment periods: 

18th–20th December 2019 and 20th–26th February 2020. Finally, all these field data were standardized at a 1-hour timestep. 

2.3 Computed k values from field data 155 

k values (cm h-1) from field observations (kobs) were computed from the gas transfer velocity equation: 

𝑘𝑜𝑏𝑠 = 𝐹 (𝛼 ∙ ∆𝑝𝐶𝑂2)⁄ ,           (4) 

where F is the measured CO2 flux (μmol cm-2 h-1), 𝛼 is the gas solubility coefficient (μmol cm-3 μatm-1), which depends on the 

measured water temperature (Wanninkhof, 1992). ΔpCO2 is the differential of pCO2 measured at 0.5 m below the surface 
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(pCO2
water) and pCO2 at saturation (pCO2

sat) in ppm measured from the flux chamber corrected by altitude (μatm). kobs was 160 

then standardized in k600 using the dimensionless Schmidt number (Sc) of CO2 by the equation: 𝑘600−𝑜𝑏𝑠 = 𝑘𝑜𝑏𝑠 ∙

(600 𝑆𝑐⁄ )−1 2⁄  (600 for freshwater standardized at 20° C). 

2.4 Models for air–water gas transfer velocity 

After years of debate, a consensus begins to emerge on the relationship linking k, intensity of turbulence and Sc (Eq. 2), even 

when starting from different physical assumptions (see Katul et al., 2018). In this study, we selected six parameterizations 165 

widely used in limnology and oceanography combining specific calibration characteristics (Table 1). We first show that they 

can all be expressed following Eq. (2) for wind shear and convection, despite their different formulations. Then, we develop 

the effects of surface waves from oceanic models and adapt the wave action for a large lake. The final lake model integrating 

wave effect is ultimately calibrated using our field data (Table 1).  

Table 1 170 

2.4.1 Wind shear 

We start with the case where near-surface dynamics are driven by a weak to moderate wind, in absence of heat exchange. In 

this case, the contribution of surface waves can be neglected and the wind stress (𝜏0 = 𝜌𝑎𝑖𝑟 ∙ 𝐶10 ∙ 𝑈10) is equal to the tangential 

shear stress (𝜏𝑡 = 𝜌𝑤𝑎𝑡 ∙ 𝑢∗,𝑤𝑎𝑡
2). The relationship between 𝜀 and the sheared velocity on the water side, 𝑢∗,𝑤𝑎𝑡, is then derived 

from a law-of-the-wall scaling for the velocity profile: 𝜀 = 𝑢∗,𝑤𝑎𝑡
3 𝜅⁄ 𝑧(0) with K being the von Kármán constant (= 0.41) and 175 

𝑧(0) the thickness of the diffusive boundary layer. This relationship leads to: 

𝑘𝑁𝐵 = 𝑎1 ∙ (𝜈 𝑢∗,𝑤𝑎𝑡
3 𝜅𝑧(0) ⁄ )

1 4⁄
𝑆𝑐−0.5 ,         (5) 

The challenge is then to define 𝑧(0). Tedford et al. (2014) followed an ad hoc observational approach and chose 𝑧(0)= 0.15 

m, as the shallower depth where 𝜀 was measured. In contrast, theoretical studies linked 𝑧(0) to the thickness of the diffusive 

or viscous sublayer (~0.1–1 cm). In line with theory, we scale this layer as 𝑧(0) = 𝑐𝜈 𝑢∗,𝑤𝑎𝑡⁄  (Wüest and Lorke, 2003; Lorke 180 

and Peeters, 2006) with c as a constant value. Taking c = 114 (Soloviev et al., 2007), the thickness of this layer typically ranges 

from 0.04 to 0.14 m under a wind regime of 10 to 1 m s-1. We therefore modify Eq. (5) as to compute the interfacial (no-

bubble, NB) exchange coefficient: 

𝑘𝑁𝐵 = 𝑎1𝑢∗,𝑤𝑎𝑡(1 𝜅𝑐⁄ )1 4⁄ 𝑆𝑐−0.5,          (6a) 

or 185 

𝑘𝑁𝐵 = 𝑎1(𝜌𝑎𝑖𝑟 𝜌𝑤𝑎𝑡⁄ )𝐶10𝑈10(1 𝜅𝑐⁄ )1 4⁄ 𝑆𝑐−0.5 ,        (6b) 

These equations show that the SRM formulation (Soloviev et al., 2007; Read et al., 2012; Table 1 and Fig. B1) is analogous 

to the COAREG flux algorithm (Fairall et al., 2011), and the formulation used in Deike and Melville (2018) with the sheared 
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velocity on the atmosphere side, 𝑢∗,𝑎𝑡𝑚 (Table 1: DM18). Indeed, when equating the expression by Deike and Melville (2018): 

𝑘𝑁𝐵 = 𝐴𝑁𝐵𝑢∗,𝑎𝑡𝑚(𝑆𝑐 600⁄ )−1 2⁄ =  𝐴𝑁𝐵𝑢∗,𝑤𝑎𝑡(𝜌𝑤𝑎𝑡 𝜌𝑎𝑡𝑚⁄ )1 2⁄ (𝑆𝑐 600⁄ )−1 2⁄  ,     (7) 190 

with (6a), we find that the coefficient a1 = 0.29 in Soloviev et al., (2007) and Read et al., (2012) is essentially equivalent to the 

coefficient 𝐴𝑁𝐵 = 𝑎1(𝜅𝑐)−1 4⁄ (1 600⁄ )1 2⁄ (𝜌𝑤𝑎𝑡 𝜌𝑎𝑖𝑟⁄ )−1 2⁄ ≈ 1.5 × 10−4 in Deike and Melville (2018) (Fig. B1), which in 

turn was found equal to the coefficient of A = 1.5 in Fairall et al. (2011). These results agree with Lorke and Peeters (2006) 

who derived a unified relation for interfacial fluxes (air-water and water-sediment) through a linear relationship of 𝑢,𝑤𝑎𝑡 to k, 

especially at the bottom interface where shear is the only relevant process. Furthermore, Equation 6 has a similar (i.e., quasi-195 

linear) wind-k relationship as the data-driven parameterization from VP13 but cannot explain the higher order polynomial 

relationship reported in CW03 and CC98. 

2.4.2 Convection 

A second source of dissipation at the surface is the convection (𝜀𝑐) resulting from surface cooling. The combination of wind 

shear and free convection near a boundary is described by the Monin-Obukhov similarity theory (MOST) with a general form 200 

derived from a turbulent kinetic energy balance (Lombardo and Gregg, 1989; Tedford et al. 2014): 

𝜀(𝑧) = 𝜀𝑢(𝑧) (𝑐𝑢 + 𝑐𝑐⌊
𝑧

𝐿𝑀𝑂
⌋),          (8) 

where 𝐿𝑀𝑂 is the Monin Obukov length scale defined as 𝐿𝑀𝑂 = 𝑢,𝑤𝑎𝑡
3 𝜅𝐵0⁄ , including 𝜀(𝑧) = 𝑐𝑢 ∙ 𝜀𝑢 + 𝑐𝑐 ∙ 𝜀𝑐  in Eq. (2) that 

can be rearranged as: 

𝑘𝑁𝐵 = 𝑎1(𝜀𝑢(𝑐𝑢 + 𝑐𝑐 ∙ 𝐵0 𝜀𝑢⁄ )1 4⁄ )𝑆𝑐−1 2⁄  ,         (9) 205 

𝑎1 ranges in the literature from 0.2 to 1.2 (Soloviev et al., 2007; MacIntyre et al., 2010; Tedford et al., 2014; Heiskanen et al. 

2014; Winslow et al., 2016), 𝑐𝑢 from 0.84 to 1 (Winslow et al., 2016) and 𝑐𝑐 from 0.37 to 2.5 (Wyngaard and Coté, 1971; 

Tedford et al., 2014). Hereafter, we use the following set of values: 𝑐𝑢 = 1 and 𝑐𝑐 = 1. Fairall et al. (2011) used an essentially 

equivalent approach but formulated in terms of a Richardson number to describe the partitioning between dissipation from 

convection and wind shear, expressing the wind shear in terms of the air-side friction velocity: 𝑅𝑓 = 𝐵0𝜐 𝑢,𝑎𝑡𝑚
4⁄ , which can be 210 

integrated into (9) as: 

𝑘𝑁𝐵 = 𝑎1 (
𝜌𝑎𝑡𝑚

𝜌𝑤𝑎𝑡
)

1 2⁄

𝑢,𝑎𝑡𝑚 (
𝑐𝑢

𝜅𝑐
(1 +

𝑅𝑓

𝑅𝑓,𝑐
))

1 4⁄

(
𝑆𝑐

600
)

−1 2⁄

 ,       (10) 

with 𝑅𝑓,𝑐 =
𝑐𝑢𝜌𝑎𝑡𝑚

2

𝑐𝑐𝜌𝑤𝑎𝑡
2 𝜅𝑐

. The details of this demonstration can be seen in Soloviev and Schlüssel (1994). 
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2.4.3 Wave action 

The effect of surface waves is commonly implemented in oceanography but barely considered in limnology. All process-based 215 

models rely on the same parameterization of energy dissipation by wind shear and convection. They however differ in how 

they parameterize energy dissipation by wave action and wave breaking. 

 

The contribution of the wave action (𝜀𝑤) is, accordingly, added as a third source of turbulence (Fig. 1). In the presence of 

surface waves, the balance between 𝜏𝑡  and 𝜏0  does not hold anymore. Therefore, Soloviev and Schlüssel (1994) added a 220 

corrective factor, 𝜑, using the Keulegan number (𝐾𝑒 = 𝑢,𝑤𝑎𝑡
3 (𝑔𝜈)⁄ ), in order to decrease the component 𝜏𝑡 = 𝜏0 ∙ 𝜑 where 𝜑 

= 1 (1 + 𝐾𝑒 𝐾𝑒𝑐⁄ )⁄ , with the critical Keulegan number (Kec) define in Soloviev and Lukas (2006). As a result, the equation 

for shear-driven dissipation 𝜀𝑢(z) is: 

𝜀𝑢(𝑧) =
𝑢,𝑤𝑎𝑡

4

𝜅𝑐𝜐
∙ 𝜑2 ,           (11) 

Following this step, the turbulent kinetic energy dissipation rate from wave action (𝜀𝑤) is added and defined with the Keulegan 225 

number by Soloviev et al. (2007) as: 

𝜀𝑤 = 𝛼𝑊 (
3

𝐵𝑆𝑞
)

1 2⁄
(𝐾𝑒 𝐾𝑒𝑐𝑟⁄ )3 2⁄

(1+𝐾𝑒 𝐾𝑒𝑐𝑟⁄ )3 2⁄

𝑢,𝑤𝑎𝑡𝑔

0.062𝜅𝐶𝑇(2𝜋𝐴𝑤)3 2⁄

𝜌𝑎𝑡𝑚

𝜌𝑤𝑎𝑡
 ,       (12) 

where 𝐶𝑇 = (𝑧0 𝐻𝑠⁄ ). z0 is the surface roughness scale from the water side and the 𝐶𝑇 value is set as a constant at 0.6 (More 

details in Soloviev et al., 2007). This definition does not hold for closed basins because, in the case of incompletely developed 

waves, the dissipation of energy from wind shear transmitted to the waves is not fully redistributed in the water body (Simon, 230 

1997). Hence, for the application in Lake Geneva, we followed Terray et al. (1996) who defined a varying 𝐶𝑇: 

𝐶𝑇 = 1.38 ∙ 10−4 (
𝑈10

𝐶𝑝
)

2.66

 ,          (13) 

where Cp is the peak speed of the wave spectrum defined in Deike and Melville (2018) according to Toba (1972, 1978). This 

leads to CT << 1. This allows to increase the effect of 𝜀𝑤  (inversely proportional to CT in Eq. 12) on k. Here, we used this 

formulation to adapt the S07 ocean model for a large lake (closed basin). Henceforth we refer to the adapted uncalibrated and 235 

calibrated models as SD20 and SD20-fit, respectively (Table 1). Finally, these three terms of 𝜀 (𝜀𝑢, 𝜀𝑐 ,∧ 𝜀𝑤) can be added 

before computing the SRM (Eq. 2) for determining k-no bubble (kNB). 

2.4.4 Bubble enhancement 

Additional deviations from the linear relationship to U10 are explained by the gas transfer resulting from bubbles and sprays 

during wave breaking. This mechanism is accounted for by adding a k-bubble (kB) term to the already mentioned kNB. Soloviev 240 

et al. (2007) used the empirical k-bubble parameterization from Woolf et al. (1997): 
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𝑘𝐵 = 𝑊
2450

𝑂𝑠(1+
1

(14𝑂𝑠𝑆𝑐−0.5)
1 1.2⁄ )

1.2 ,          (14) 

where W is the fractional whitecap coverage only expressed as a function of wind (3.84 ∙ 10−6 ∙ 𝑈10
3.41 and Os is Ostwald gas 

solubility. This formulation does not take wave height into account (Fig. B1). Nevertheless, a recent study (Deike and Melville, 

2018) performed a new numerical process-based parameterization for gas transfer velocity from bubble enhancement 245 

considering Hs through the following equation: 

𝑘𝐵 =
𝐴𝐵

𝑂𝑠
𝑢∗,𝑎𝑡𝑚

5 3⁄ (𝑔𝐻𝑠)2 3⁄ (
𝑆𝑐

600
)

−1 2⁄

 ,          (15) 

where 𝐴𝐵  is an empirical factor with dimension (= 10-5 m-2 s2) and Os defines by the ideal gas constant (R), the surface water 

temperature (T0) and, CO2 solubility coefficient in freshwater (𝛼) (Reichl and Deike, 2020). Then, the gas transfer velocity is 

expressed as a sum of no-bubble kNB and bubble kB components (Table 1: S07, DM18, SD20, and SD20-fit) following Keeling 250 

(1993) and Woolf et al. (1997, 2005). Our adapted models modified from S07 (SD20 and SD20-fit) include a refined 

parameterization of the wave action term 𝜀𝑤  along with the bubble term from DM18 (SD20 and SD20-fit). In addition, for the 

model SD20-fit, the 𝑎1 parameter of Eq. (2) and the 𝐴𝐵  parameter of Eq. (15) were fitted to the k600 observations (𝑎1 = 0.33 

and 𝐴𝐵  = 3 10-5 m-2 s2). 

 255 

With this review of existing and adapting parameterizations, we show that (i) there is a discrepancy between SRM-based model 

with shear stress as the only energy source and empirical parameterizations with polynomial (order > 1) wind-based 

relationship. Such a discrepancy is tentatively resolved by adding the effect of convection and surface waves. (ii) We further 

highlight that most fitting parameters from the different SRM-based models are in good agreement. (iii) We finally recall that 

it is possible to provide a unifying parameterization of k with SRM model including wind shear, wind-induced waves, and 260 

convection with only a few input parameters such as U10, 𝐵0, and Fetch. 

3 Results 

3.1 Observed and predicted k  

After quality check, our dataset contains 94 discrete CO2 flux observations. We first assess the representativeness of our 

sampling by comparing the survey-specific and annual distributions of the three main inputs for k-models: U10 (all models), 265 

𝐵0 during convective periods (T14, S07, SD20 & SD20-fit) and Hs (S07, DM18, SD20 & SD20-fit) (Fig. 3; Temporal evolution 

of these three terms in Fig. C1). From 13th June 2019 to 12th June 2020, the average wind speed over Lake Geneva is 2.9 m s-

1 with a mode at 2.5 m s-1; very low wind speeds (< 1 m s-1) are encountered 12 % of the year, while high- (> 5 m s-1 to very 

high > 10 m s-1) wind events represent 15 % and 2 % of the year, respectively. The sampling surveys covered the full annual 

range of U10. Average and modal values of 𝐵0 over the year are close to 0.25 10-7 m2 s-3. However, the sampling covered only 270 
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the lowest 50 % of the annual distribution and under-samples conditions of potentially strong convection. Considering that the 

dissipation by buoyancy flux, as parameterized in the process-based models, is already well known in the literature and that it 

is not the central point of our study, we posit that the under-sampling of 𝐵0 is therefore not expected to significantly affect our 

analysis. The predicted modal Hs value is 0.15 m over the year.  Events of high Hs (> 0.4 m) represent 6 % of the year, with a 

maximum Hs of 1.1 m. As for U10, the surveys covered the full range of annual Hs. 275 

Figure 3 

Observationally based k600 are shown with their error bars corresponding to the uncertainties of the pCO2 in air and in water 

(± 50 ppm) in Fig. 4a. We notice that all the measurements with a wave height > 0.4 m were observed for wind speeds > 5 m 

s-1 and the corresponding k600 are located above the linear function (i.e., from a linear regression against wind shear velocity; 

Fig. B1) scaling k600 to 𝑢∗ (i.e., first order relationship) We then compare the k600 observed during the specific surveys to the 280 

values computed with all k600 models throughout the annual cycle, in relation to U10 (Fig. 4b-c). Table 2 provides the root-

mean square errors (RMSE) for all model estimates compared to kobs during the flux surveys, (i) for the full dataset (All Wind), 

and split (ii) for low wind (< 5 m s-1, LW) and (iii) strong wind conditions (≥ 5 m s-1, SW). The three empirical wind-based 

models only depend on wind (Fig. 4b). Both CC98 and CW03 were originally calibrated for small lakes, using a mass balance 

calibration method (Table 1). However, they lead to divergent gas transfer velocities, particularly above 5 m s-1, illustrated by 285 

a RMSE for SW as high as 22.8 cm h-1 for CC98 while CW03 performs better (RMSE SW = 12.8 cm h-1). Furthermore, both 

models underestimate k600 at low wind (Fig. 4a), with a higher deviation for CW03 (Table 2). The k values predicted by VP13 

are closer to those of the process-based models that explicitly integrate wave actions (S07 and DM18) (Fig. 4bc), demonstrating 

that lake size integration in the empirical model captures at least part of the wave action on k. Performances of VP13 at strong 

winds (RMSE SW = 12.7 cm h-1) were better than those of the ocean-derived models integrating surface waves (RMSE SW = 290 

13–15.9 cm h-1). However, VP13 shows a positive offset during calm periods, along with the highest RMSE of the set of 

models at low wind speed (Fig. 4b; Table 2). 

Figure 4 

The process-based models (Fig. 4c) provide different k600 values for a given wind speed, owing to the integration of additional 

environmental components (i.e., the varying drag coefficient, the convective mixing in R12 and T14 as well as the effect of 295 

waves in S07, DM18, SD20 and SD20-fit). All process-based models are similar at low winds as they share a common physical 

basis for parameterization of wind shear and convection. Therefore, they lead to similar RMSE (2.9–3.5 cm h-1) under such 

conditions, where surface waves are negligible (Table 2). Divergences occur at higher wind speeds. T14, initially developed 

for small lakes with limited wind exposure, performed the worst (RMSE: 19.8 cm h-1). This increased k-underestimation at 

high winds can be attributed to (i) dissipation by wave action and bubble formation not considered (in R12 and T14), and (ii) 300 

to the use of a constant 𝑧(0) = 0.15 m in the T14 model (Eq. 5). This approximation of the diffusive layer is consistent with 

low wind speed but is almost one order of magnitude too large under strong wind speed. Other process-based models, designed 

for greater wind range (> 10 ms-1), integrate surface waves and, as a result, lead to better estimates than R12 and T14 (RMSE: 

10.4–15.9 cm h-1). However, the ocean wave model of DM18 shows lower performances at strong winds than CW03 and VP13 
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(Fig. 4bc). Finally, the specific fit parameterization of the SD20-fit model improves the performance at high wind speeds by 305 

~30 % (RMSE = 10.5 cm h-1), outperforming all the other methods. 

Table 2 

3.2 Surface wave integration 

We herein scrutinize how those varying parameterizations ultimately alter the shape of relationship between k600 and U10. In 

R12 (Fig. 5a), wind is only included through wind shear, resulting in a linear relationship between k600 and U10, as already 310 

anticipated. Adding the wave action (no bubble) through the S07 parameterization (Fig. 5b) does not lead to any significant 

departure from the minimal R12 model. Adapting wave action by decreasing CT (for the no-bubble term) leads to a departure 

from the wind shear linear relationship for Hs > 0.4 m (Fig. 5c).  

 

Then, adding the k bubble term related to wave breaking of DM18 further increases this deviation from the linear k600-U10 315 

relationship but also scatters k600 estimates for a given U10 (Fig. 5d). Finally, the fitting with observationally based k600 improves 

the estimation for strong wind (Fig. 5e; Table 2). Given the range of wind fetch from ~ 0.5 km to ~30 km, the contribution of 

waves varies for a given wind speed depending on the fetch, as evidenced by the scattering of the parameterized k600 for a 

given U10 (Fig. 5f). A significant modification of k600 by wave action and wave breaking occurs for a fetch length > 15 km and 

U10 > 5 m s-1 (Fig. 5f), in the case of Lake Geneva, generating wave of Hs > 0.4 m (Fig. 5e). 320 

Figure 5 

As compared to k600 estimated by R12 (Fig. 5a), the SD20 and SD20-fit models provide k estimates that are 20–50 % higher 

for U10 = 10 m s-1, respectively, and 40–70 % higher for U10 = 15 m s-1. Therefore, adapting the surface waves, through the 

change of the wave action for incompletely developed waves and the fitting to observed data encountered in local lake 

conditions, leads to better performances of SD20 models. SD20-fit reached the lowest RMSE at all wind speeds and is thereafter 325 

used as a reference for the modelling of the annual gas transfer velocities. 

3.3 Annual cumulative gas transfer velocity and the effect of extreme conditions 

We show above that models accounting for surface waves better represent the non-linear increase in k600 at high winds. Because 

high-wind events remain rare, we test whether a better representation of k600 during rare, high-wind events affects the local 

estimates of k600 over a full year. To this end, cumulative sums of hourly k600 were computed over a full annual cycle (13th June 330 

2019 – 12th June 2020) for all k-models (Fig. 6). The annual dynamics such as the annually averaged k600 were compared using 

SD20-fit as a new reference model. 

Figure 6 

Cumulated k600 computed for SD20-fit shows some episodic steep increases between December and March, due to the winterly 

prevalence of high wind events (winter average wind speed, 3.25 m s-1, was greater than the summer mean, 2.55 m s-1, by 25 335 

%) and greater significant wave height (winter average wave height, 0.15 m, greater than the summer value, 0.10 m, by 50 %) 
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(Fig. C1). The average hourly k600 by the SD20-fit model is 7.3 ± 7.4 cm h-1 (mean ± se, Fig. 6a). Periods of high-winds, 

although accounting for 15 % of data points, contribute 44 % of annually cumulated-k600 in the SD20 and SD20-fit models 

(Fig. 6b), while the periods of high waves (Hs ≥ 0.4 m) accounting for only 6 % of data points, contribute to more than  20 % 

of annually cumulated-k600.The wind-based models are those for which cumulative k600 diverges the most from the SD20-fit 340 

reference model, with the lowest annual averaged k600 for CC98 and CW03 (3.9 ± 2.7 and 4.8 ± 9.3 respectively) and the 

highest for VP13 (9.9 ± 6.1). These divergences arise from the low performances of these models at low wind regimes (Fig. 

4a, 6b; Table 2), which represent 85 % of annual data-points. All the other process-based models have relative dynamics of 

cumulative k600 similar to that of the SD20-fit model and end up with annually averaged k600 that are 15 % lower than for the 

SD20-fit. The representation of k600 at low wind speeds is similar for all process-based models, and the divergence arises from 345 

the representation of the rarer high wind speed episodes, which contribute to 43–46 % of annual cumulative k600 (Fig. 6b). 

4 Discussion 

The history of k-models, simulating the gas transfer velocity for surface waters, dates back from the early 1990’s. k-models 

have been developed and tested in small lakes sheltered from winds (e.g., Crusius and Wanninkhof, 2003; Tedford et al., 

2014), large lakes under low to moderate wind speed (Vachon and Prairie, 2013), and oceans (e.g., Soloviev et al., 2007; Fairall 350 

et al., 2011; Esters et al., 2017; Deike and Melville, 2018). While the effects of surface waves on k can be neglected in small 

lakes, we question herein whether this assumption holds for large lakes such as Lake Geneva, in which surface waves are 

frequently observed (Fig. 2; Fig. C1). We evaluated the performance of different experimental-based and process-based models 

to estimate k600 in the large Lake Geneva. We show that integrating the effect of wave formation at high wind speeds and long 

fetch better represents the sharp increase of the k600 values during such episodic windy events. 355 

4.1 Choice of k-models 

Wind-based models have been long known for misestimating k600 at low wind speeds (Eugster et al., 2003; MacIntyre et al., 

2010; Erkkilä et al., 2018). Consistently, wind-based models showed the lowest performances for Lake Geneva, especially at 

low wind speeds (CW03 and VP13), which resulted in large discrepancies in annually averaged and cumulative k600 over the 

full year. They are however easy to compute, require few inputs (only U10) and, remain by far the most used to estimate lakes 360 

CO2 emissions worldwide (e.g., Raymond et al. 2013). One solution to increase the performance of wind-based models is to 

revise calibration at each new site (Klaus and Vachon, 2020). Another possibility is to broadly adopt process-based models. 

The presented process-based models require input data that are today more easily accessible: wind speed, heat flux and wind 

fetch (i.e., distances from the shore) routinely acquired at high-frequency in many lakes. The development of R packages such 

as Lake Metabolizer (Winslow et al., 2016) in which the calculations of process-based models are implemented, also alleviates 365 

their computational difficulty. Both increased data availability and computational tools should foster the use of process-based 

k-models, which hold great potential to obtain more accurate global k600 estimates. 
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The analysis of the models adapted from the existing literature to account for the effect of waves, SD20 and SD20-fit (Fig. 5d-

e-f), showed that the wave contribution to k becomes significant for Hs > 0.4 m, corresponding, for Lake Geneva, to winds 370 

blowing at 5 m s-1 from the southwest where the fetch length is maximal (> 15 km) with respect to the measurement site. A 

significant to the gas transfer velocity by surface waves is expected in lakes where Hs > 0.4 m is not infrequent. Wave heights 

beyond this threshold value of Hs are frequently encountered in lakes of similar or greater sizes than Lake Geneva (6 % of 

annual time in Lake Geneva). In the Great Lakes of North America, Hubertz et al. (1991) showed that the mean wave height 

of all these lakes were > 0.4 m in summer and close to 1 m in winter with a maximum of up to 5 m. Hs > 0.4 m can also form 375 

over elongated lakes of smaller size, such as smaller Swiss Lakes (e.g., Lake Neuchâtel, Lake Bienne) (Amini et al., 2017). 

Since SD20-fit is a process-based model integrating the four main processes in a mathematically coherent way, we would 

expect that it can be applied to such lakes experiencing Hs > 0.4 m and improves the accuracy of k estimates. Because waves 

can physically damage in-shore and off-shore infra-structures, many large lakes benefit from wave forecasts. Hs-data from 

those forecasting systems (e.g., National Data Buoy Centre – NOAA, Wave Atlas from SwissLakes.net; Amini et al., 2017) 380 

could allow testing whether the SD20-fit models can be applied to those lakes and whether kNB and kB through a1 and Ab need 

to be recalibrated or fitted to the local context if flux measurement data are available, as for this study. Energy dissipation 

during high-wave events increases the gas-transfer velocity well beyond the linear relationship derived for wind shear alone. 

We therefore expect that computed gas fluxes at the air-water interface should be significantly improved by the integration of 

surface waves into the k-models. 385 

4.2 Implication of four components on the annual k estimation and the annual CO2 fluxes 

4.2.1 Seasonal distribution of kCO2 

Converting k600 to kCO2 using the Schmidt number (Wanninkhof, 1992) highlights the importance of water temperature in gas 

exchange dynamics. Indeed, the seasonal distribution of the cumulative k600 is ~20 % and ~30 % for the warm (spring and 

summer) and cold (autumn and winter) seasons, respectively. Once the temperature-effect accounted for, this distribution 390 

increases to 26.1 % for the summer and decreases to 24.9 % for the winter but remains unchanged for spring and autumn. 

While R12 only use wind shear and convective terms, the selected process-based model (SD20-fit) allows a decomposition 

into the four main drivers of the gas transfer velocity, hence paving the way to a better understanding of the implication of 

these processes throughout an annual cycle.  

Figure 7 395 

Wind shear remains the dominant component of the gas exchange velocity over the different seasons (Fig. 7a). The annual 

contribution of surface waves (wave action and bubble formation) is limited to 9 to 10 % of the cumulative k in Autumn and 

Winter. The contribution of buoyancy flux at surface to k is even smaller for both models (R12 and SD20-fit) at this seasonal 

scale. Yet, both the buoyancy flux and the surface waves can significantly increase k during episodic events, during which 
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they can contribute disproportionately to k at hourly (up to 80% for convection) and daily (up to 25 % for surface waves) time 400 

scales (Fig. 7b). Several studies have emphasized the disproportionate contribution of episodic mixing events on annual flux, 

bringing CO2 back to lake surfaces such as after ice break in dimictic lakes (Karlsson et al., 2013; Finlay et al., 2019) or during 

fall mixing on a eutrophic deep lake (Reed et al., 2018). Process-based k-models integrating both the buoyancy flux and the 

wind-induced waves offer the opportunity to mechanistically investigate how much those episodic events contribute to annual 

emissions through short-term modifications of the gas exchange velocity.   405 

4.2.2 Consequences on the choice of k-model on the monthly to annual CO2 flux estimation 

Monthly fluxes were computed based on k-estimates from the different models at hourly timestep and the monthly average of 

water temperature and recorded pCO2 at the lake surface (OLA-IS, AnaEE-France, INRAE of Thonon-les-Bains, CIPEL, 

Rimet et al., 2020; Perga et al., 2016) as well as a constant pCO2 in the atmosphere (400 μatm). As predicted by the Fick’s 

law, the highest outgassing fluxes occur in fall and winter, when water mixing brings CO2 up to the lake surface, while low 410 

up-taking gas fluxes occur in spring and summer, when primary production depletes surface CO2 below saturation. However, 

annual estimates of net CO2 outgassing vary from 14.7 to 37.1 mmolC m-2 d-1 (Table 3) depending on the k-model used for 

computation. Consistently, differences between model estimates are relatively low in summer since both the ∆pCO2 gradient 

(100-200 μatm) and wave occurrence are limited. Estimated fluxes are strongly dependent on the chosen k-model in winter 

when both ∆pCO2 (475 μatm) and surface waves occurrence are higher (Table 3; Fig.7). Therefore, while high wave events 415 

represent only 6 % of the total surface waves occurrence (Hs > 0.4 m), an incomplete consideration and description of their 

contribution may lead to an annual flux underestimation of about 20–25 %. The weak contribution of convection is at odds 

with observations in small lakes, but not unexpected, since large lakes are exposed to stronger winds, such that wind shear-

driven 𝜀𝑢 often outpaces convectively driven, 𝜀𝑐 (Read et al, 2012). However, the limited impact of the buoyancy flux on k 

does not rule out its contribution to CO2 exchange. Indeed, convective mixing plays a central role in the deepening of the 420 

mixed layer allowing the export of the CO2 stored in the hypolimnion towards the surface during the cold period and thereby 

controlling the pCO2 gradient (Zimmerman et al, 2020) and the observed wintertime outgassing. Altogether, both surface 

oversaturated CO2 concentrations (as a result of convective mixing) and wind-induced waves are more relevant in fall and 

wintertime for the monomictic Lake Geneva, leading to most of the annual outgassing during this season (Table 3). As for 

many monomictic lakes, these seasons drive most of the annual CO2 budget of Lake Geneva (Perga et al, 2016), while they 425 

usually correspond to those where direct measurements are the scarcest. An improved quantification of k-values through SRM-

models including wind-induced waves should contribute to refining the overall estimation of large lakes contribution to 

regional CO2 emissions. 

Table 3 

https://doi.org/10.5194/esd-2021-30
Preprint. Discussion started: 7 May 2021
c© Author(s) 2021. CC BY 4.0 License.



15 

 

5 Conclusion 430 

Investigations of the four main processes generating the gas transfer velocity in the large Lake Geneva demonstrated the 

importance of considering surface waves during episodic windy events responsible for more than 44 % of annual cumulated 

k600. The in-depth study of the behaviour of the process-based models has enabled to underscore their consistent predictions at 

low and strong wind, especially considering the new combination and adaptation model, SD20-fit. This last model significantly 

improves the estimation of CO2 flux when these three thresholds appear in the field: U10 > 5 ms-1, Fetch > 15 km, and Hs > 0.4 435 

m, making it applicable in a wide range of lake sizes. Furthermore, SD20-fit is assembled on solid theoretical bases coming 

from limnological and oceanic literature and allows to analyse the distribution of these four main terms (ku, kc, kw, and kb) 

across a variety of time scales depending on the kind of study.  

 

Noteworthily, SD20 was built on the basis of a single measurement point on the lake, just as for most of the existing k models. 440 

Therefore, the question of the extrapolation of the model to the whole of the lake remains essential. We assume three ways of 

different complexities: (i) estimate an average fetch value depending on the wind direction and the geometry of the lake, (ii) 

discretize the lake into a few parts according to the complexity of its geometry and direction of the prevailing winds, and (iii) 

discretize the lake into a large number of pixels based on 2D or 3D wind models available in some countries in order to estimate 

gas transfer velocity and gas fluxes at a finer spatial scale. Nevertheless, the question of the spatial variability of the ∆CO2 is 445 

still open and difficult to analyse at high frequency in large lakes. 

 

To conclude, this study sheds light on the complexity of large lakes located at the interface between small, sheltered lakes and 

the open oceans, thus experiencing a combination of processes relevant for both small and large systems. The possibility of 

using process-based models in a fairly simple way with few inputs to improve the precision of the gas transfer velocity and 450 

therefore the gas flux should be supported in future research. In addition, this approach is very promising regarding long-term 

trends of CO2 emissions from lakes, as well as a finer estimation of fluxes during more intense episodic events. 

Appendix A 

Figure A1 

Figure A2 455 

Figure A3 

Appendix B 

Figure B1 
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Appendix C 

Figure C1 460 
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Figure 1: Conceptual scheme of the four main processes driving gas transfer velocity (k) in a large lake induced by wind 

and cooling events. These four processes are split into two types of k: k-bubble for the bubble formation (kB = kb) and 

k-no bubble for the convective mixing, wind shear and wave action term which are added (kNB = kc + ku + kw). Below 

this scheme, a non-exhaustive review about conceptual approaches of k-models used in 1st Fickian law. From left to 650 

right, increase in the complexity level of k-models as well as their study site (limnological to oceanic case). All these 

variables are described in the section 2.4 and in Table 1. 
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Figure 2: Location and map of Lake Geneva with the two prevailing winds (left side) also depicted by the wind rose 

(top right side). The wave rose highlights the highest wavefield generated at the sampling location by the southwest 655 

wind with a larger fetch (bottom right side). Both wind and wave roses are computed with annual data from 13th June 

2019 to 12th June 2020 at LéXPLORE. 

 

 

 660 

Figure 3: Annual distribution of three main components used to compute k600 models. Orange) Wind speed at 10 m; 

Blue) Buoyancy flux at surface during cooling; Turquoise) Significant wave height; and these survey data observed 

during CO2 flux measurements after quality control (+). 
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Figure 4: a) k600 observed as a function of U10 and coloured according to Hs (colorbar), and the error bars produced by 665 

the uncertainty of ∆CO2 (± 50 ppm) as well as the 𝒖∗-k600 linear regression (solid line: see also Fig. B1); b) k600 wind-

based models (CC98, CW03 & VP13); c) k600 process-based models (T14, S07, DM18, SD20 & SD20-fit) computed with 

annual data; Observed k600 derived from CO2 flux chamber measurements (+). 

 

Figure 5: Relation U10 vs k600 modelled and coloured according to Hs (colorbar) in a-b-c-d-e as well as coloured 670 

according to fetch distance (colorbar) in f. a) R12 integrating wind shear and convection; b) S07 integrating wind shear, 

convection, and wave action for fully developed waves; c) S20 integrating wind shear, convection, and wave action for 

not fully developed waves; d) SD20 similar to S20 adding the k bubble term of DM18; e-f) SD20-fit similar to SD20 with 

a1 and Ab fitted to k observed. 
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 675 

 

Figure 6: a) Cumulative k600 modelled over an annual cycle; b) Cumulative k600 for wind < 5 m s-1; c) Cumulative k600 

for wind ≥ 5 m s-1. 

 
Figure 7: a) Distribution of kCO2 generated by two main processes (ku and kc) in R12 and four main processes (ku, kc, kw, 680 

and kb) in SD20-fit for each season; Spring (April-May-June); Summer (July-August-September); Fall (October-

November-December); Winter (January-February-March). The height of bar represents the cumulative of kCO2 by 

season for both models (R12 and SD20-fit); b) Distribution of four k generated by wind shear, convection, wave action 

and bubble enhancement (ku, kc, kw, and kb) along the annual cycle. Use of SD20-fit model where 𝒌𝒖 = 𝑺𝑹𝑴(𝜺𝒖), 𝒌𝒄 =
𝑺𝑹𝑴(𝜺𝒖 + 𝜺𝒄 + 𝜺𝒘) − 𝑺𝑹𝑴(𝜺𝒖 + 𝜺𝒘), 𝒌𝒘 = 𝑺𝑹𝑴(𝜺𝒖 + 𝜺𝒄 + 𝜺𝒘) − 𝑺𝑹𝑴(𝜺𝒖 + 𝜺𝒄), and 𝒌𝒃. 685 
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Table 1: Summary of characteristics of kSc models for predicting the air-water gas transfer velocity based on wind 

speed (CC98, CW03) and lake size (VP13), surface renewal model (T14, R12 & S07), COARSE approach (DM18) and 

both adapted models called SD20 and SD20-fit from a combination of S07 and DM18. 690 

Model Equation Method Site Calibrated range 

CC98 

𝑘600 = 2.07 + 0.215 ∙ 𝑈10
1.7 

𝑘𝑆𝑐  =  𝑘600 (
𝑆𝑐

600
)

−1 2⁄

 

Mass Balance 

By gas tracer 
Lake 

Area (0.15 km2) 

U10 (< 9 ms-1) 

CW03 

𝑘600 = 0.168 + 0.228 ∙ 𝑈10
2.2 

𝑘𝑆𝑐  =  𝑘600 (
𝑆𝑐

600
)

−1 2⁄

 

Mass Balance 

By gas tracer 
Lake 

Area (0.128 km2) 

U10 (< 6 ms-1) 

VP13 

𝑘600 = 2.51 + (1.48 ∙ 𝑈10) + (0.39 ∙ 𝑈10

∙ 𝑙𝑜𝑔10(𝐿𝑎𝑘𝑒 𝑠𝑖𝑧𝑒) 

𝑘𝑆𝑐  =  𝑘600 (
𝑆𝑐

600
)

−1 2⁄

 

Floating 

Chamber 
Lakes 

Area (0.2–602 km2) 

U10 (< 6 ms-1) 

T14 
𝑘𝑆𝑐 =  𝑎1 ∙ (𝜀 ∙ 𝜐)1 4⁄ ∙ 𝑆𝑐−1 2⁄  

𝜀 =  𝜀𝑊𝑖𝑛𝑑 𝑠ℎ𝑒𝑎𝑟 + 𝐶𝑜𝑛𝑣𝑒𝑐𝑡𝑖𝑜𝑛  

Microstructure 

profiling 
Lake 

Area (4 km2) 

U10 (< 10 ms-1) 

R12 
𝑘𝑆𝑐 =  𝑎1 ∙ (𝜀 ∙ 𝜐)1 4⁄ ∙ 𝑆𝑐−1 2⁄  

𝜀 =  𝜀𝑊𝑖𝑛𝑑 𝑠ℎ𝑒𝑎𝑟 + 𝜀𝐶𝑜𝑛𝑣𝑒𝑐𝑡𝑖𝑜𝑛  
- - Following S07 

S07 

𝑘𝑆𝑐 =  𝑘𝑆𝑐−𝑁𝐵−𝑆07 + 𝑘𝑆𝑐−𝐵−𝑊97 

𝑘𝑆𝑐−𝑁𝐵 =  𝑎1 ∙ (𝜀 ∙ 𝜐)1 4⁄ ∙ 𝑆𝑐−1 2⁄  

𝜀 =  𝜀𝑊𝑖𝑛𝑑 𝑠ℎ𝑒𝑎𝑟 +  𝜀𝐶𝑜𝑛𝑣𝑒𝑐𝑡𝑖𝑜𝑛

+ 𝜀𝑊𝑎𝑣𝑒 𝑎𝑐𝑡𝑖𝑜𝑛 

Eddy 

covariance 
Ocean 

Area (>100’000 km2) 

U10 (< 20 ms-1) 

Wave (0–10 m) 

DM18 

𝑘𝑆𝑐 = (𝑘𝑁𝐵 + 𝑘𝐵) ∙ (𝑆𝑐 600⁄ )−1 2⁄  

𝑘𝑁𝐵 = 𝐴𝑁𝐵 ∙ 𝑢∗,𝑎𝑡𝑚 

𝑘𝐵 = (𝐴𝐵  𝑂𝑠)⁄ ∙ 𝑢∗,𝑎𝑡𝑚
5 3⁄ ∙ (𝑔 ∙ 𝐻𝑠)2 3⁄  

Eddy 

Covariance 
Ocean 

Area (>100’000 km2) 

U10 (< 30 ms-1) 

Wave (1–10 m) 

SD20 
𝑘𝑆𝑐 =  𝑘𝑆𝑐−𝑁𝐵−𝑆07∗ + 𝑘𝑆𝑐−𝐵−𝐷𝑀18 

*Adaptation of 𝜀𝑊𝑎𝑣𝑒 𝑎𝑐𝑡𝑖𝑜𝑛 for large lake 

Floating 

Chamber 
Lake 

Area (582 km2) 

U10 (< 16 ms-1) 

Wave (0–1.2 m) 

SD20-fit 

𝑘𝑆𝑐 =  𝑘𝑆𝑐−𝑁𝐵−𝑆07∗ + 𝑘𝑆𝑐−𝐵−𝐷𝑀18  

with 𝑎1 from 𝑘𝑆𝑐−𝑁𝐵−𝑆07∗ and AB from  

𝑘𝑆𝑐−𝐵−𝐷𝑀18 fitted to observations  

- - - 

CC98 Cole and Caraco (1998), CW03 Crusius and Wanninkhof (2003), VP13 Vachon and Prairie (2013), T14 Tedford 

et al. (2014), R12 Read et al. (2012), S07 Soloviev et al. (2007), DM18 Deike and Melville (2018). 

 

https://doi.org/10.5194/esd-2021-30
Preprint. Discussion started: 7 May 2021
c© Author(s) 2021. CC BY 4.0 License.



27 

 

Table 2: RMSE of k600 models for all wind speed (U10), U10 < 5 m s-1 (i.e., LW) and U10 ≥ 5 m s-1 (i.e., SW). 

RMSE CC98 CW03 VP13 T14 R12 S07 DM18 SD20 SD20-fit 

All U10 9.8 6.5 6.7 8.6 7.5 6.2 7.3 6.2 5.2 

U10 < 5 ms-1 3.2 4.2 4.5 2.9 3.3 3.3 3.5 3.3 3.2 

U10 ≥ 5 ms-1 22.8 12.8 12.7 19.8 16.6 13 15.9 13.1 10.5 

 695 

Table 3: Monthly to annual CO2 flux estimation (mmolC m-2 d-1) from k-models and monthly ∆CO2 average (μatm) as 

well as their deviation from SD20-fit. 

Period ∆CO2 CC98 CW03 VP13 T14 R12 S07 DM18 SD20 SD20-fit 

April 42 2.7 2.3 6.7 3.3 2.9 3.0 2.7 3.0 3.7 

May -110 -10.0 -16.1 -25.2 -13.2 -13.3 -15.2 -13.2 -13.5 -16.8 

June -85 -5.0 -4.3 -12.7 -6.3 -5.8 -6.0 -5.7 -6.0 -7.3 

Spring -51 -4.2 -5.9 -10.5 -5.5 -5.4 -6.2 -5.5 -5.6 -6.9 

July -120 -8.1 -8.4 -21.0 -11.0 -10.7 -11.3 -10.6 -11.0 -13.5 

August -180 -10.3 -7.4 -27.4 -15.8 -14.7 -15.2 -14.8 -15.2 -18.7 

September -140 -8.7 -9.0 -22.7 -13.3 -13.1 -13.7 -13.0 -13.3 -16.7 

Summer -145 -9.0 -8.3 -23.7 -13.4 -12.8 -13.4 -12.8 -13.2 -16.3 

October 10 0.6 0.6 1.6 1.0 0.9 1.0 1.0 1.0 1.3 

November 450 35.0 42.3 93.3 59.7 59.1 62.7 59.7 63.0 78.0 

December 590 51.6 80.6 130.0 82.6 83.9 93.2 84.8 92.6 114.5 

Fall 350 29.0 41.2 74.8 47.6 47.9 52.2 48.4 52.1 64.5 

January 540 40.0 49.7 99.7 64.8 60.9 66.5 60.6 65.5 81.0 

February 500 49.3 84.8 123.4 71.4 72.5 82.1 72.8 81.0 100.0 

March 385 40.3 56.1 102.3 61.3 60.03 65.5 59.4 63.2 78.1 

Winter 475 43.1 63.1 108.1 65.7 64.5 71.1 64.1 69.7 86.0 

Annual 157 14.7 22.5 37.1 23.6 23.4 25.9 23.5 25.7 31.8 

           

Annual 

gCm-2yr-1 
- 64.6 98.8 163.1 103.6 102.8 113.9 103.3 113.0 139.7 

Deviation 

from SD20-fit 
- -54 % -29 % +17 % -26 % -26 % -18 % -26 % -19 % - 
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Figure A1: Schematics of eosFD operation (eosense.com) followed by its mini-platform construction and its positioning 

for measurements in the field (Lake Geneva at LéXPLORE platform). The raft design also complies with 705 

recommendations to minimize artificial turbulence induced by the chamber’s walls, with 10 cm long-edges entering the 

water (Vachon et al., 2010). 

 

 

 710 

Figure A2: Visualisation of 304 observed k600 during the five periods of flux measurements (i.e., 13th–14th June 2019, 

27th–28th August 2019, 1st–5th October 2019, 18th–20th December 2019, and 20th–26th February 2020). 

 

 

 715 
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Figure A3: a) Raw outputs of the eosFD during one period of CO2 flux measurements; ∆CO2 between both cavities of 

measures (atmosphere cavity and chamber cavity) (blue line); Standard deviation of each cavity between two 720 

automated flushing (30 minutes of interval), Chamber cavity (red line), Atmosphere cavity (yellow line); and the CO2 

flux (black dash line). b) Temporal evolution of U10 and Hs during the same period than CO2 flux measurements. 

Increase in flux on 25th February corresponding to increase in wind speed and waves. 

 

 725 

 
Figure B1: a) Comparison of Soloviev et al. (2007) and Deike and Melville (2018) for the first order function of friction 

velocity at the water side (𝒖∗,𝒘𝒂𝒕) (blue points) and at the atmosphere side (𝒖∗,𝒂𝒕𝒎) (green points) with their linear 

regression (black line); the linear function of Vachon and Prairie (2013) for a lake size of 582 km2 (yellow points) as 

well as the linear regression from ; b) Visualisation of S07 with empirical parameterization of bubble term (Woolf, 730 

1997) regardless of wave height in function of wind speed at 10 m; c) Visualisation of DM18 in function of wind speed, 

only effect of bubble term from 10 ms-1. 
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Figure C1: Annual evolution of 3 main inputs of k-models; Wind speed at 10 m (U10); Buoyancy flux at surface (𝐵0); 

Significant wave height (Hs). 735 
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